K^2+6k^2-4k-24=0

Simple and best practice solution for K^2+6k^2-4k-24=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for K^2+6k^2-4k-24=0 equation:



^2+6K^2-4K-24=0
We add all the numbers together, and all the variables
6K^2-4K=0
a = 6; b = -4; c = 0;
Δ = b2-4ac
Δ = -42-4·6·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$K_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$K_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{16}=4$
$K_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4}{2*6}=\frac{0}{12} =0 $
$K_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4}{2*6}=\frac{8}{12} =2/3 $

See similar equations:

| 2u2-8u=0 | | (3x-8)=(4x-19) | | -.65p-5=0.35p | | 8(x-5)-8=31x-232 | | -0.75p-2=9.25p | | 84/3x+11=15 | | Q^2-3q^2-25q+75=0 | | 3(n+3)=-4n+30 | | 3(q^2-3q)=0 | | 12(3y)=64 | | q2–7q+7=0 | | X=100-(.2x) | | (9+d)+10=210 | | h(50)=-8(50)^2+60(50) | | p2+9=–9p | | p^2+9=–9p | | x=25.00-0.09x | | x+57=137+x | | 4w(w+3)=16 | | 5w2+2=9w | | -2u=-4u2 | | -9=-3v2 | | 3x+5+5x-20=180 | | 5u2+4=0 | | 2(a=7)-7+9 | | 6y2+6y=0 | | 6w-2=-2 | | 3x+5=5x-20=180 | | y=15×+10 | | y2-5y+3=0 | | 4x-84-x+78=180 | | 4c(c+3)=-8 |

Equations solver categories